Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Heart Fail ; 17(4): e011110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567527

RESUMO

BACKGROUND: Mutations in LMNA encoding nuclear envelope proteins lamin A/C cause dilated cardiomyopathy. Activation of the AKT/mTOR (RAC-α serine/threonine-protein kinase/mammalian target of rapamycin) pathway is implicated as a potential pathophysiologic mechanism. The aim of this study was to assess whether pharmacological inhibition of mTOR signaling has beneficial effects on heart function and prolongs survival in a mouse model of the disease, after onset of heart failure. METHODS: We treated male LmnaH222P/H222P mice, after the onset of heart failure, with placebo or either of 2 orally bioavailable mTOR inhibitors: everolimus or NV-20494, a rapamycin analog highly selective against mTORC1. We examined left ventricular remodeling, and the cell biological, biochemical, and histopathologic features of cardiomyopathy, potential drug toxicity, and survival. RESULTS: Everolimus treatment (n=17) significantly reduced left ventricular dilatation and increased contractility on echocardiography, with a 7% (P=0.018) reduction in left ventricular end-diastolic diameter and a 39% (P=0.0159) increase fractional shortening compared with placebo (n=17) after 6 weeks of treatment. NV-20494 treatment (n=15) yielded similar but more modest and nonsignificant changes. Neither drug prevented the development of cardiac fibrosis. Drug treatment reactivated suppressed autophagy and inhibited mTORC1 signaling in the heart, although everolimus was more potent. With regards to drug toxicity, everolimus alone led to a modest degree of glucose intolerance during glucose challenge. Everolimus (n=20) and NV-20494 (n=20) significantly prolonged median survival in LmnaH222P/H222P mice, by 9% (P=0.0348) and 11% (P=0.0206), respectively, compared with placebo (n=20). CONCLUSIONS: These results suggest that mTOR inhibitors may be beneficial in patients with cardiomyopathy caused by LMNA mutations and that further study is warranted.


Assuntos
Cardiomiopatias , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Cardíaca , Camundongos , Humanos , Masculino , Animais , Everolimo/farmacologia , Everolimo/uso terapêutico , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Inibidores de MTOR , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Mutação , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mamíferos/metabolismo
2.
Cureus ; 15(8): e43763, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37727164

RESUMO

Background In hand surgery, physicians are working to improve patient satisfaction by offering several minor procedures in the physician's office via the Wide-Awake Local Anesthesia No Tourniquet (WALANT) method. This study investigates the degree of patient satisfaction, out-of-pocket costs, peri- and postoperative pain, convenience, and comfort experienced with in-office hand procedures compared to ambulatory surgery center (ASC) procedures. Methods A 10-question survey consisting of a 10-point Likert scale of agreement and numerical questions was administered to patients treated with minor hand operations in the office and ASC settings in Florida, USA. The surgical procedures included are bony reconstruction, percutaneous pinning, open reduction internal fixation, closed fracture reduction, mass removal, endoscopic carpal tunnel release, Dupuytren's release/tendon repair, and trigger finger release. Procedures and patient demographics were assessed via chart review. Independent samples t-test was used to determine statistical associations with significance defined as p < 0.05. Results Patients reported a strong level of agreement in response to questions 1-3 and 6-8, indicating a high degree of convenience, comfort, and overall satisfaction with both in-office and ASC procedures. Positive metrics gauged in questions 1-3 and 6-8 averaged 9.64 ± 0.14 in the office setting and 9.62 ± 0.16 in the ASC setting. Questions 4 and 5 averaged 2.74 ± 0.29 in the office setting and 2.84 ± 4.12 in the ASC setting, indicating mild disagreement that the surgery or recovery period was painful. In-office patients reported taking 0.91 ± 2.80 days off work and ASC patients reported taking 12.43 ± 22.51 days off work following surgery (p = 0.0039). Respondents reported an out-of-pocket cost averaging $348 ± $943 in the office setting and $574 ± $1262 in the ASC setting, depending on insurance coverage (p = 0.3019). Conclusions Though costs and time off of work differed between the two groups due to the different procedures in either setting, patient satisfaction metrics were comparable. While patient satisfaction depends on the operating physician, these results demonstrate that patients treated in-office and in an ASC have similar levels of approval with their hand surgery care.

3.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36424916

RESUMO

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

4.
Circ Res ; 130(2): 273-287, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050691

RESUMO

Rapidly changing and transient protein-protein interactions regulate dynamic cellular processes in the cardiovascular system. Traditional methods, including affinity purification and mass spectrometry, have revealed many macromolecular complexes in cardiomyocytes and the vasculature. Yet these methods often fail to identify in vivo or transient protein-protein interactions. To capture these interactions in living cells and animals with subsequent mass spectrometry identification, enzyme-catalyzed proximity labeling techniques have been developed in the past decade. Although the application of this methodology to cardiovascular research is still in its infancy, the field is developing rapidly, and the promise is substantial. In this review, we outline important concepts and discuss how proximity proteomics has been applied to study physiological and pathophysiological processes relevant to the cardiovascular system.


Assuntos
Miocárdio/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Animais , Humanos , Proteoma/genética , Proteoma/metabolismo
5.
Annu Rev Physiol ; 84: 285-306, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34752709

RESUMO

Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.


Assuntos
Adrenérgicos , Canais de Cálcio Tipo L , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/farmacologia , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia
6.
JACC Basic Transl Sci ; 6(7): 598-609, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34368510

RESUMO

Protein-protein interactions are of paramount importance in regulating normal cardiac physiology. Methodologies to elucidate these interactions in vivo have been limited. Recently, proximity-dependent biotinylation, with the use of BioID, TurboID, and ascorbate peroxidase, has been developed to uncover cellular neighborhoods and novel protein-protein interactions. These cutting-edge techniques have enabled the identification of subcellular localizations of specific proteins and the neighbors or interacting proteins within these subcellular regions. In contrast to classic methods such as affinity purification and subcellular fractionation, these techniques add covalently bound tags in living cells, such that spatial relationships and interaction networks are not disrupted. Recently, these methodologies have been used to identify novel protein-protein interactions relevant to the cardiovascular system. In this review, we discuss the development and current use of proximity biotin-labeling for cardiovascular research.

7.
Methods Enzymol ; 654: 115-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34120710

RESUMO

Protein-protein interactions are critically important for cellular functions, including regulation of ion channels. Ion channels are typically part of large macromolecular complexes that impact their function. These complexes have traditionally been elucidated via standard biochemical techniques including immunoprecipitation, pull-down assays and mass spectrometry. Recently, several methods have been developed to provide a more complete depiction of the microenvironment or "neighborhood" of proteins of interest. These new methods, which fall broadly under the category of proximity-dependent labeling techniques, aim to overcome the limitations imposed by antibody-based techniques and mass spectrometry. In this chapter, we describe the use of proximity labeling to elucidate the cardiac CaV1.2 macromolecular complex under basal conditions and after ß-adrenergic stimulation. Using these methodologies, we have identified the mechanism underlying adrenergic stimulation of the Ca2+ current in the heart.


Assuntos
Canais de Cálcio Tipo L , Proteômica , Canais Iônicos , Espectrometria de Massas
8.
Front Cardiovasc Med ; 8: 649489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748198

RESUMO

Reentrant cardiac arrhythmias such as atrial fibrillation (AF) and ventricular fibrillation (VF) are common cardiac arrhythmias that account for substantial morbidity and mortality throughout the world. However, the mechanisms and optimal ablation treatment strategies for such arrhythmias are still unclear. Using 2D optical mapping of a mouse model with AF and VF, we have identified regional heterogeneity of the action potential duration (APD) in the atria and ventricles of the heart as key drivers for the initiation and persistence of reentry. The purpose of this paper is to discuss theoretical patterns of dispersion, demonstrate patterns of dispersion seen in our mouse model and discuss the computational analysis of APD dispersion patterns. These analyses and discussions may lead to better understanding of dispersion patterns in patients with these arrhythmias, as well as help comprehend whether and how reducing dispersion can lead to arrhythmia risk stratification and treatment strategies for arrhythmias.

9.
Hum Mol Genet ; 29(24): 3919-3934, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33388782

RESUMO

Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.


Assuntos
Cardiomiopatias/patologia , Modelos Animais de Doenças , Coração/fisiopatologia , Lamina Tipo A/genética , Distrofias Musculares/patologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Feminino , Homeostase , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/etiologia , Distrofias Musculares/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
10.
Circ Res ; 128(1): 76-88, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33086983

RESUMO

RATIONALE: Changing activity of cardiac CaV1.2 channels under basal conditions, during sympathetic activation, and in heart failure is a major determinant of cardiac physiology and pathophysiology. Although cardiac CaV1.2 channels are prominently upregulated via activation of PKA (protein kinase A), essential molecular details remained stubbornly enigmatic. OBJECTIVE: The primary goal of this study was to determine how various factors converging at the CaV1.2 I-II loop interact to regulate channel activity under basal conditions, during ß-adrenergic stimulation, and in heart failure. METHODS AND RESULTS: We generated transgenic mice with expression of CaV1.2 α1C subunits with (1) mutations ablating interaction between α1C and ß-subunits, (2) flexibility-inducing polyglycine substitutions in the I-II loop (GGG-α1C), or (3) introduction of the alternatively spliced 25-amino acid exon 9* mimicking a splice variant of α1C upregulated in the hypertrophied heart. Introducing 3 glycine residues that disrupt a rigid IS6-α-interaction domain helix markedly reduced basal open probability despite intact binding of CaVß to α1C I-II loop and eliminated ß-adrenergic agonist stimulation of CaV1.2 current. In contrast, introduction of the exon 9* splice variant in the α1C I-II loop, which is increased in ventricles of patients with end-stage heart failure, increased basal open probability but did not attenuate stimulatory response to ß-adrenergic agonists when reconstituted heterologously with ß2B and Rad or transgenically expressed in cardiomyocytes. CONCLUSIONS: Ca2+ channel activity is dynamically modulated under basal conditions, during ß-adrenergic stimulation, and in heart failure by mechanisms converging at the α1C I-II loop. CaVß binding to α1C stabilizes an increased channel open probability gating mode by a mechanism that requires an intact rigid linker between the ß-subunit binding site in the I-II loop and the channel pore. Release of Rad-mediated inhibition of Ca2+ channel activity by ß-adrenergic agonists/PKA also requires this rigid linker and ß-binding to α1C.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Canais de Cálcio Tipo L/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Proteínas ras/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Potenciais da Membrana , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , Fosforilação , Conformação Proteica , Coelhos , Relação Estrutura-Atividade , Proteínas ras/genética
11.
Nature ; 577(7792): 695-700, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969708

RESUMO

Increased cardiac contractility during the fight-or-flight response is caused by ß-adrenergic augmentation of CaV1.2 voltage-gated calcium channels1-4. However, this augmentation persists in transgenic murine hearts expressing mutant CaV1.2 α1C and ß subunits that can no longer be phosphorylated by protein kinase A-an essential downstream mediator of ß-adrenergic signalling-suggesting that non-channel factors are also required. Here we identify the mechanism by which ß-adrenergic agonists stimulate voltage-gated calcium channels. We express α1C or ß2B subunits conjugated to ascorbate peroxidase5 in mouse hearts, and use multiplexed quantitative proteomics6,7 to track hundreds of proteins in the proximity of CaV1.2. We observe that the calcium-channel inhibitor Rad8,9, a monomeric G protein, is enriched in the CaV1.2 microenvironment but is depleted during ß-adrenergic stimulation. Phosphorylation by protein kinase A of specific serine residues on Rad decreases its affinity for ß subunits and relieves constitutive inhibition of CaV1.2, observed as an increase in channel open probability. Expression of Rad or its homologue Rem in HEK293T cells also imparts stimulation of CaV1.3 and CaV2.2 by protein kinase A, revealing an evolutionarily conserved mechanism that confers adrenergic modulation upon voltage-gated calcium channels.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteômica , Receptores Adrenérgicos beta/metabolismo , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo N/metabolismo , Microambiente Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Masculino , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Miocárdio/metabolismo , Fosforilação , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transdução de Sinais , Proteínas ras/química , Proteínas ras/metabolismo
12.
J Innov Card Rhythm Manag ; 10(10): 3874-3880, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32494407

RESUMO

Calcium flowing through voltage-dependent calcium channels into cardiomyocytes mediates excitation-contraction coupling, controls action-potential duration and automaticity in nodal cells, and regulates gene expression. Proper surface targeting and basal and hormonal regulation of calcium channels are vital for normal cardiac physiology. In this review, we discuss the roles of voltage-gated calcium channels in the heart and the mechanisms by which these channels are regulated by physiological signaling pathways in health and disease.

13.
J Clin Invest ; 129(2): 647-658, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30422117

RESUMO

Ca2+ channel ß-subunit interactions with pore-forming α-subunits are long-thought to be obligatory for channel trafficking to the cell surface and for tuning of basal biophysical properties in many tissues. Unexpectedly, we demonstrate that transgenic expression of mutant α1C subunits lacking capacity to bind CaVß can traffic to the sarcolemma in adult cardiomyocytes in vivo and sustain normal excitation-contraction coupling. However, these ß-less Ca2+ channels cannot be stimulated by ß-adrenergic pathway agonists, and thus adrenergic augmentation of contractility is markedly impaired in isolated cardiomyocytes and in hearts. Similarly, viral-mediated expression of a ß-subunit-sequestering peptide sharply curtailed ß-adrenergic stimulation of WT Ca2+ channels, identifying an approach to specifically modulate ß-adrenergic regulation of cardiac contractility. Our data demonstrate that ß subunits are required for ß-adrenergic regulation of CaV1.2 channels and positive inotropy in the heart, but are dispensable for CaV1.2 trafficking to the adult cardiomyocyte cell surface, and for basal function and excitation-contraction coupling.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Cobaias , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Transporte Proteico , Sarcolema/genética
14.
Proc Natl Acad Sci U S A ; 114(34): 9194-9199, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784807

RESUMO

Calcium influx through the voltage-dependent L-type calcium channel (CaV1.2) rapidly increases in the heart during "fight or flight" through activation of the ß-adrenergic and protein kinase A (PKA) signaling pathway. The precise molecular mechanisms of ß-adrenergic activation of cardiac CaV1.2, however, are incompletely known, but are presumed to require phosphorylation of residues in α1C and C-terminal proteolytic cleavage of the α1C subunit. We generated transgenic mice expressing an α1C with alanine substitutions of all conserved serine or threonine, which is predicted to be a potential PKA phosphorylation site by at least one prediction tool, while sparing the residues previously shown to be phosphorylated but shown individually not to be required for ß-adrenergic regulation of CaV1.2 current (17-mutant). A second line included these 17 putative sites plus the five previously identified phosphoregulatory sites (22-mutant), thus allowing us to query whether regulation requires their contribution in combination. We determined that acute ß-adrenergic regulation does not require any combination of potential PKA phosphorylation sites conserved in human, guinea pig, rabbit, rat, and mouse α1C subunits. We separately generated transgenic mice with inducible expression of proteolytic-resistant α1C Prevention of C-terminal cleavage did not alter ß-adrenergic stimulation of CaV1.2 in the heart. These studies definitively rule out a role for all conserved consensus PKA phosphorylation sites in α1C in ß-adrenergic stimulation of CaV1.2, and show that phosphoregulatory sites on α1C are not redundant and do not each fractionally contribute to the net stimulatory effect of ß-adrenergic stimulation. Further, proteolytic cleavage of α1C is not required for ß-adrenergic stimulation of CaV1.2.


Assuntos
Adrenérgicos/metabolismo , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miocárdio/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Cobaias , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Domínios Proteicos , Proteólise , Coelhos , Ratos
15.
FASEB J ; 27(5): 1859-67, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23325318

RESUMO

Excessively increased peripheral vasoconstriction is a hallmark of heart failure (HF). Here, we show that in mice with systolic HF post-myocardial infarction, the myogenic tone of third-order mesenteric resistance vessels is increased, the vascular smooth muscle (VSM) membrane potential is depolarized by ~20 mV, and vessel wall intracellular [Ca(2+)] is elevated relative to that in sham-operated control mice. Despite the increased [Ca(2+)], the frequency and amplitude of spontaneous transient outward currents (STOCs), mediated by large conductance, Ca(2+)-activated BK channels, were reduced by nearly 80% (P<0.01) and 25% (P<0.05), respectively, in HF. The expression of the BK α and ß1 subunits was reduced in HF mice compared to controls (65 and 82% lower, respectively, P<0.01). Consistent with the importance of a reduction in BK channel expression and function in mediating the HF-induced increase in myogenic tone are two further findings: a blunting of paxilline-induced increase in myogenic tone in HF mice compared to controls (0.9 vs. 10.9%, respectively), and that HF does not alter the increased myogenic tone of BK ß1-null mice. These findings identify electrical dysregulation within VSM, specifically the reduction of BK currents, as a key molecular mechanism sensitizing resistance vessels to pressure-induced vasoconstriction in systolic HF.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Vasoconstrição/fisiologia , Animais , Sinalização do Cálcio , Masculino , Potenciais da Membrana , Artérias Mesentéricas/fisiologia , Camundongos , Músculo Liso Vascular/fisiologia , Resistência Vascular/fisiologia
16.
Nat Med ; 16(5): 598-602, 1p following 602, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20418887

RESUMO

Obsessive-compulsive disorder (OCD) is a common psychiatric disorder defined by the presence of obsessive thoughts and repetitive compulsive actions, and it often encompasses anxiety and depressive symptoms. Recently, the corticostriatal circuitry has been implicated in the pathogenesis of OCD. However, the etiology, pathophysiology and molecular basis of OCD remain unknown. Several studies indicate that the pathogenesis of OCD has a genetic component. Here we demonstrate that loss of a neuron-specific transmembrane protein, SLIT and NTRK-like protein-5 (Slitrk5), leads to OCD-like behaviors in mice, which manifests as excessive self-grooming and increased anxiety-like behaviors, and is alleviated by the selective serotonin reuptake inhibitor fluoxetine. Slitrk5(-/-) mice show selective overactivation of the orbitofrontal cortex, abnormalities in striatal anatomy and cell morphology and alterations in glutamate receptor composition, which contribute to deficient corticostriatal neurotransmission. Thus, our studies identify Slitrk5 as an essential molecule at corticostriatal synapses and provide a new mouse model of OCD-like behaviors.


Assuntos
Comportamento Animal , Proteínas de Membrana/deficiência , Neostriado/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Transtorno Obsessivo-Compulsivo/diagnóstico , Animais , Comportamento Compulsivo/genética , Asseio Animal , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Sinapses , Transmissão Sináptica
17.
J Clin Invest ; 118(6): 2111-20, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18497886

RESUMO

Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10-/-CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133- population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133- metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133- cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24-), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133(- )subset, which is also capable of tumor initiation in NOD/SCID mice.


Assuntos
Antígenos CD/biossíntese , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/biossíntese , Células-Tronco/metabolismo , Antígeno AC133 , Animais , Células Epiteliais/metabolismo , Inflamação , Camundongos , Camundongos SCID , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Metástase Neoplásica , Peptídeos , Fenótipo , Regiões Promotoras Genéticas , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...